Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38613252

RESUMO

BACKGROUND: Finding sensitive clinical outcome measures has become crucial in natural history studies and therapeutic trials of neuromuscular disorders. Here, we focus on 1-year longitudinal data from quantitative magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (31P MRS) in a placebo-controlled study of sirolimus for inclusion body myositis (IBM), also examining their links to functional, strength, and clinical parameters in lower limb muscles. METHODS: Quantitative MRI and 31P MRS data were collected at 3 T from a single site, involving 44 patients (22 on placebo, 22 on sirolimus) at baseline and year-1, and 21 healthy controls. Assessments included fat fraction (FF), contractile cross-sectional area (cCSA), and water T2 in global leg and thigh segments, muscle groups, individual muscles, as well as 31P MRS indices in quadriceps or triceps surae. Analyses covered patient-control comparisons, annual change assessments via standard t-tests and linear mixed models, calculation of standardized response means (SRM), and exploration of correlations between MRI, 31P MRS, functional, strength, and clinical parameters. RESULTS: The quadriceps and gastrocnemius medialis muscles had the highest FF values, displaying notable heterogeneity and asymmetry, particularly in the quadriceps. In the placebo group, the median 1-year FF increase in the quadriceps was 3.2% (P < 0.001), whereas in the sirolimus group, it was 0.7% (P = 0.033). Both groups experienced a significant decrease in cCSA in the quadriceps after 1 year (P < 0.001), with median changes of 12.6% for the placebo group and 5.5% for the sirolimus group. Differences in FF and cCSA changes between the two groups were significant (P < 0.001). SRM values for FF and cCSA were 1.3 and 1.4 in the placebo group and 0.5 and 0.8 in the sirolimus group, respectively. Water T2 values were highest in the quadriceps muscles of both groups, significantly exceeding control values in both groups (P < 0.001) and were higher in the placebo group than in the sirolimus group. After treatment, water T2 increased significantly only in the sirolimus group's quadriceps (P < 0.01). Multiple 31P MRS indices were abnormal in patients compared to controls and remained unchanged after treatment. Significant correlations were identified between baseline water T2 and FF at baseline and the change in FF (P < 0.001). Additionally, significant correlations were observed between FF, cCSA, water T2, and functional and strength outcome measures. CONCLUSIONS: This study has demonstrated that quantitative MRI/31P MRS can discern measurable differences between placebo and sirolimus-treated IBM patients, offering promise for future therapeutic trials in idiopathic inflammatory myopathies such as IBM.

2.
BMC Musculoskelet Disord ; 25(1): 146, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365661

RESUMO

BACKGROUND: Dysferlinopathy is a phenotypically heterogeneous group of hereditary diseases caused by mutations in the DYSF gene. Early contractures are considered rare, and rigid spine syndrome in dysferlinopathy has been previously reported only once. CASE PRESENTATION: We describe a 23-year-old patient with Miyoshi myopathy with a rigid spine and multiple contractures, a rare phenotypic variant. The disease first manifested when the patient was 13 years old, with fatigue of the gastrocnemius muscles and the development of pronounced contractures of the Achilles tendons, flexors of the fingers, and extensors of the toes, followed by the involvement of large joints and the spine. Magnetic resonance imaging revealed signs of connective tissue and fatty replacement of the posterior muscles of the thighs and lower legs. Edema was noted in the anterior and medial muscle groups of the thighs, lower legs, and the multifidus muscle of the back. Whole genome sequencing revealed previously described mutations in the DYSF gene in exon 39 (c.4282 C > T) and intron 51 (c.5785-824 C > T). An immunohistochemical analysis and Western blot showed the complete absence of dysferlin protein expression in the muscle fibers. CONCLUSIONS: This case expands the range of clinical and phenotypic correlations of dysferlinopathy and complements the diagnostic search for spine rigidity.


Assuntos
Contratura , Miopatias Distais , Atrofia Muscular , Distrofia Muscular do Cíngulo dos Membros , Humanos , Adolescente , Adulto Jovem , Adulto , Proteínas de Membrana/genética , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/complicações , Distrofia Muscular do Cíngulo dos Membros/diagnóstico por imagem , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Contratura/etiologia , Contratura/genética
3.
Neuromuscul Disord ; 33(4): 349-357, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972667

RESUMO

Dysferlinopathy is a muscle disease characterized by a variable clinical presentation and is caused by mutations in the DYSF gene. The Jain Clinical Outcome Study for Dysferlinopathy (COS) followed the largest cohort of patients (n=187) with genetically confirmed dysferlinopathy throughout a three-year natural history study, in which the patients underwent muscle function tests and muscle magnetic resonance imaging (MRI). We previously described the pattern of muscle pathology in this population and established a series of imaging criteria for diagnosis. In this paper, we describe the muscle imaging and clinical features of a subgroup of COS participants whose muscle imaging results did not completely meet the diagnostic criteria. We reviewed 184 T1-weighted (T1w) muscle MRI scans obtained at the baseline visit of the COS study, of which 106 were pelvic and lower limb only and 78 were whole-body scans. We identified 116 of the 184 patients (63%) who did not meet at least one of the established imaging criteria. The highest number found of unmet criteria was four per patient. We identified 24 patients (13%) who did not meet three or more of the nine established criteria and considered them as "outliers". The most common unmet criterion (27.3% of cases) was the adductor magnus being equally or more affected than the adductor longus. We compared the genetic, demographic, clinical and muscle function data of the outlier patients with those who met the established criteria and observed that the outlier patients had an age of disease onset that was significantly older than the whole group (29.3 vs 20.5 years, p=0.0001). This study expands the phenotypic muscle imaging spectrum of patients with dysferlinopathy and can help to guide the diagnostic process in patients with limb girdle weakness of unknown origin.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Humanos , Adulto Jovem , Adulto , Distrofia Muscular do Cíngulo dos Membros/diagnóstico por imagem , Distrofia Muscular do Cíngulo dos Membros/genética , Músculo Esquelético/patologia , Imageamento por Ressonância Magnética , Mutação
4.
J Magn Reson Imaging ; 58(5): 1557-1568, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36877200

RESUMO

BACKGROUND: The reference standard for assessing water T2 (T2,H2O ) at high fat fraction (FF) is 1 H MRS. T2,H2O (T2,H2O,MRS ) dependence on FF (FFMRS ) has recently been demonstrated in muscle at high FF (i.e. ≥60%). PURPOSE: To investigate the relationship between T2,H2O,MRS and FFMRS in the thigh/leg muscles of patients with neuromuscular diseases and to compare with quantitative MRI. STUDY TYPE: Retrospective case-control study. POPULATION: A total of 151 patients with neuromuscular disorders (mean age ± standard deviation = 52.5 ± 22.6 years, 54% male), 44 healthy volunteers (26.5 ± 13.0 years, 57% male). FIELD STRENGTH/SEQUENCE: A 3-T; single-voxel stimulated echo acquisition mode (STEAM) MRS, multispin echo (MSE) imaging (for T2 mapping, T2,H2O,MRI ), three-point Dixon imaging (for FFMRI and R 2 * mapping). ASSESSMENT: Mono-exponential and bi-exponential models were fitted to water T2 decay curves to extract T2,H2O,MRS and FFMRS . Water resonance full-width-at-half-maximum (FWHM) and B0 spread (∆B0 ) values were calculated. T2,H2O,MRI (mean), FFMRI (mean, kurtosis, and skewness), and R 2 * (mean) values were estimated in the MRS voxel. STATISTICAL TESTS: Mann-Whitney U tests, Kruskal-Wallis tests. A P-value <0.05 was considered statistically significant. RESULTS: Normal T2,H2O,MRS threshold was defined as the 90th percentile in healthy controls: 30.3 msec. T2,H2O,MRS was significantly higher in all patients with FFMRS < 60% compared to healthy controls. We discovered two subgroups in patients with FFMRS ≥ 60%: one with T2,H2O,MRS ≥ 30.3 msec and one with T2,H2O,MRS < 30.3 msec including abnormally low T2,H2O,MRS . The latter subgroup had significantly higher water resonance FWHM, ∆B0 , FFMRI kurtosis, and skewness values but nonsignificantly different R 2 * (P = 1.00) and long T2,H2O,MRS component and its fraction (P > 0.11) based on the bi-exponential analysis. DATA CONCLUSION: The findings suggest that the cause for (abnormally) T2,H2O,MRS at high FFMRS is biophysical, due to differences in susceptibility between muscle and fat (increased FWHM and ∆B0 ), rather than pathophysiological such as compartmentation changes, which would be reflected by the bi-exponential analysis. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.


Assuntos
Doenças Neuromusculares , Água , Humanos , Masculino , Feminino , Estudos Retrospectivos , Estudos de Casos e Controles , Músculo Esquelético/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
5.
Neuromuscul Disord ; 33(2): 199-207, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36689846

RESUMO

Myostatin is a myokine which acts upon skeletal muscle to inhibit growth and regeneration. Myostatin is endogenously antagonised by follistatin. This study assessed serum myostatin and follistatin concentrations as monitoring or prognostic biomarkers in dysferlinopathy, an autosomal recessively inherited muscular dystrophy. Myostatin was quantified twice with a three-year interval in 76 patients with dysferlinopathy and 38 controls. Follistatin was quantified in 62 of these patients at the same timepoints, and in 31 controls. Correlations with motor function, muscle fat fraction and contractile cross-sectional area were performed. A regression model was used to account for confounding variables. Baseline myostatin, but not follistatin, correlated with baseline function and MRI measures. However, in individual patients, three-year change in myostatin did not correlate with functional or MRI changes. Linear modelling demonstrated that function, serum creatine kinase and C-reactive protein, but not age, were independently related to myostatin concentration. Baseline myostatin concentration predicted loss of ambulation but not rate of change of functional or MRI measures, even when relative inhibition with follistatin was considered. With adjustment for extra-muscular causes of variation, myostatin could form a surrogate measure of functional ability or muscle mass, however myostatin inhibition does not form a promising treatment target in dysferlinopathy.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Miostatina , Humanos , Prognóstico , Distrofia Muscular do Cíngulo dos Membros/diagnóstico por imagem , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Músculo Esquelético/metabolismo , Biomarcadores/metabolismo
6.
J Cachexia Sarcopenia Muscle ; 13(6): 2888-2897, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36058852

RESUMO

BACKGROUND: Water T2 (T2H2O ) mapping is increasingly being used in muscular dystrophies to assess active muscle damage. It has been suggested as a surrogate outcome measure for clinical trials. Here, we investigated the prognostic utility of T2H2O to identify changes in muscle function over time in limb girdle muscular dystrophies. METHODS: Patients with genetically confirmed dysferlinopathy were assessed as part of the Jain Foundation Clinical Outcomes Study in dysferlinopathy. The cohort included 18 patients from two sites, both equipped with 3-tesla magnetic resonance imaging (MRI) systems from the same vendor. T2H2O value was defined as higher or lower than the median in each muscle bilaterally. The degree of deterioration on four functional tests over 3 years was assessed in a linear model against covariates of high or low T2H2O at baseline, age, disease duration, and baseline function. RESULTS: A higher T2H2O at baseline significantly correlated with a greater decline on functional tests in 21 out of 35 muscles and was never associated with slower decline. Higher baseline T2H2O in adductor magnus, vastus intermedius, vastus lateralis, and vastus medialis were the most sensitive, being associated bilaterally with greater decline in multiple timed tests. Patients with a higher than median baseline T2H2O (>40.6 ms) in the right vastus medialis deteriorated 11 points more on the North Star Ambulatory Assessment for Dysferlinopathy and lost an additional 86 m on the 6-min walk than those with a lower T2H2O (<40.6 ms). Optimum sensitivity and specificity thresholds for predicting decline were 39.0 ms in adductor magnus and vastus intermedius, 40.0 ms in vastus medialis, and 40.5 ms in vastus lateralis from different sites equipped with different MRI systems. CONCLUSIONS: In dysferlinopathy, T2H2O did not correlate with current functional ability. However, T2H2O at baseline was higher in patients who worsened more rapidly on functional tests. This suggests that inter-patient differences in functional decline over time may be, in part, explained by different severities of the active muscle damage, assessed by T2H2O measure at baseline. Significant challenges remain in standardizing T2H2O values across sites to allow determining globally applicable thresholds. The results from the present work are encouraging and suggest that T2H2O could be used to improve prognostication, patient selection, and disease modelling for clinical trials.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Humanos , Água , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/patologia , Músculo Esquelético/patologia , Distrofias Musculares/patologia
7.
Best Pract Res Clin Rheumatol ; 36(2): 101765, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35760742

RESUMO

Imaging is an important tool in the evaluation of idiopathic inflammatory myopathies. It plays a role in diagnosis, assessment of disease activity and follow-up, and as a non-invasive biomarker. Among the different modalities, nuclear magnetic resonance imaging (MRI), ultrasound (US), and positron emission tomography (PET) may have the most clinical utility in myositis. MRI is currently the best modality to evaluate skeletal muscle and provides excellent characterization of muscle edema and fat replacement through the use of T1-weighted and T2-weighted fat suppressed/STIR sequences. Although MRI can be read qualitatively for the presence of abnormalities, a more quantitative approach using Dixon sequences and the generation of water T2 parametric maps would be preferable for follow-up. Newer protocols such as diffusion-weighted imaging, functional imaging measures, and spectroscopy may be of interest to provide further insights into myositis. Despite the advantages of MRI, image acquisition is relatively time-consuming, expensive, and not accessible to all patients. The use of US to evaluate skeletal muscle in myositis is gaining interest, especially in chronic disease, where fat replacement and fibrosis are detected readily by this modality. Although easily deployed at the bedside, it is heavily dependent on operator experience to recognize disease states. Further, systematic characterization of muscle edema by US is still needed. PET provides valuable information on muscle function at a cellular level. Fluorodeoxyglucose (FDG-PET) has been the most common application in myositis to detect pathologic uptake indicative of inflammation. The use of neurodegenerative markers is now also being utilized for inclusion body myositis. These different modalities may prove to be complementary methods for myositis evaluation.


Assuntos
Miosite de Corpos de Inclusão , Miosite , Biomarcadores , Edema/patologia , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Miosite/diagnóstico , Miosite de Corpos de Inclusão/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Água
8.
Front Neurol ; 13: 828525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359643

RESUMO

Dysferlinopathy is a muscular dystrophy with a highly variable functional disease progression in which the relationship of function to some patient reported outcome measures (PROMs) has not been previously reported. This analysis aims to identify the suitability of PROMs and their association with motor performance.Two-hundred and four patients with dysferlinopathy were identified in the Jain Foundation's Clinical Outcome Study in Dysferlinopathy from 14 sites in 8 countries. All patients completed the following PROMs: Individualized Neuromuscular Quality of Life Questionnaire (INQoL), International Physical Activity Questionnaire (IPAQ), and activity limitations for patients with upper and/or lower limb impairments (ACTIVLIMs). In addition, nonambulant patients completed the Egen Klassifikation Scale (EK). Assessments were conducted annually at baseline, years 1, 2, 3, and 4. Data were also collected on the North Star Assessment for Limb Girdle Type Muscular Dystrophies (NSAD) and Performance of Upper Limb (PUL) at these time points from year 2. Data were analyzed using descriptive statistics and Rasch analysis was conducted on ACTIVLIM, EK, INQoL. For associations, graphs (NSAD with ACTIVLIM, IPAQ and INQoL and EK with PUL) were generated from generalized estimating equations (GEE). The ACTIVLIM appeared robust psychometrically and was strongly associated with the NSAD total score (Pseudo R 2 0.68). The INQoL performed less well and was poorly associated with the NSAD total score (Pseudo R 2 0.18). EK scores were strongly associated with PUL (Pseudo R 2 0.69). IPAQ was poorly associated with NSAD scores (Pseudo R 2 0.09). This study showed that several of the chosen PROMs demonstrated change over time and a good association with functional outcomes. An alternative quality of life measure and method of collecting data on physical activity may need to be selected for assessing dysferlinopathy.

9.
J Cachexia Sarcopenia Muscle ; 13(3): 1850-1863, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35373496

RESUMO

BACKGROUND: Natural history studies in neuromuscular disorders are vital to understand the disease evolution and to find sensitive outcome measures. We performed a longitudinal assessment of quantitative magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (31 P MRS) outcome measures and evaluated their relationship with function in lower limb skeletal muscle of dysferlinopathy patients. METHODS: Quantitative MRI/31 P MRS data were obtained at 3 T in two different sites in 54 patients and 12 controls, at baseline, and three annual follow-up visits. Fat fraction (FF), contractile cross-sectional area (cCSA), and muscle water T2 in both global leg and thigh segments and individual muscles and 31 P MRS indices in the anterior leg compartment were assessed. Analysis included comparisons between patients and controls, assessments of annual changes using a linear mixed model, standardized response means (SRM), and correlations between MRI and 31 P MRS markers and functional markers. RESULTS: Posterior muscles in thigh and leg showed the highest FF values. FF at baseline was highly heterogeneous across patients. In ambulant patients, median annual increases in global thigh and leg segment FF values were 4.1% and 3.0%, respectively (P < 0.001). After 3 years, global thigh and leg FF increases were 9.6% and 8.4%, respectively (P < 0.001). SRM values for global thigh FF were over 0.8 for all years. Vastus lateralis muscle showed the highest SRM values across all time points. cCSA decreased significantly after 3 years with median values of 11.0% and 12.8% in global thigh and global leg, respectively (P < 0.001). Water T2 values in ambulant patients were significantly increased, as compared with control values (P < 0.001). The highest water T2 values were found in the anterior part of thigh and leg. Almost all 31 P MRS indices were significantly different in patients as compared with controls (P < 0.006), except for pHw , and remained, similar as to water T2 , abnormal for the whole study duration. Global thigh water T2 at baseline was significantly correlated to the change in FF after 3 years (ρ = 0.52, P < 0.001). There was also a significant relationship between the change in functional score and change in FF after 3 years in ambulant patients (ρ = -0.55, P = 0.010). CONCLUSIONS: This multi-centre study has shown that quantitative MRI/31 P MRS measurements in a heterogeneous group of dysferlinopathy patients can measure significant changes over the course of 3 years. These data can be used as reference values in view of future clinical trials in dysferlinopathy or comparisons with quantitative MRI/S data obtained in other limb-girdle muscular dystrophy subtypes.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Fósforo , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico por imagem , Distrofia Muscular do Cíngulo dos Membros/patologia , Coxa da Perna , Água
10.
NMR Biomed ; 35(10): e4735, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35352440

RESUMO

Magnetic resonance signals from different nuclei can be excited or received at the same time,rendering simultaneous or rapidly interleaved multi-nuclear acquisitions feasible. The advan-tages are a reduction of total scan time compared to sequential multi-nuclear acquisitions or that additional information from heteronuclear data is obtained at thesame time and anatomical position. Information content can be qualitatively increased by delivering a more comprehensive MR-based picture of a transient state (such as an exercise bout). Also, combiningnon-proton MR acquisitions with 1 Hinformation (e.g., dynamic shim updates and motion correction) can be used to improve data quality during long scans and benefits image coregistration. This work reviews the literature on interleaved and simultaneous multi-nuclear MRI and MRS in vivo. Prominent use cases for this methodology in clinical and research applications are brain and muscle, but studies have also been carried out in other targets, including the lung, knee, breast and heart. Simultaneous multi-nuclear measurements in the liver and kidney have also been performed, but exclusively in rodents. In this review, a consistent nomenclature is proposed, to help clarify the terminology used for this principle throughout the literature on in-vivo MR. An overview covers the basic principles, the technical requirements on the MR scanner and the implementations realised either by MR system vendors or research groups, from the early days until today. Considerations regarding the multi-tuned RF coils required and heteronuclear polarisation interactions are briefly discussed, and fields for future in-vivo applications for interleaved multi-nuclear MR pulse sequences are identified.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Movimento (Física) , Ondas de Rádio
11.
Muscle Nerve ; 65(5): 531-540, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35179231

RESUMO

INTRODUCTION/AIMS: There is debate about whether and to what extent either respiratory or cardiac dysfunction occurs in patients with dysferlinopathy. This study aimed to establish definitively whether dysfunction in either system is part of the dysferlinopathy phenotype. METHODS: As part of the Jain Foundation's International Clinical Outcome Study (COS) for dysferlinopathy, objective measures of respiratory and cardiac function were collected twice, with a 3-y interval between tests, in 188 genetically confirmed patients aged 11-86 y (53% female). Measures included forced vital capacity (FVC), electrocardiogram (ECG), and echocardiogram (echo). RESULTS: Mean FVC was 90% predicted at baseline, decreasing to 88% at year 3. FVC was less than 80% predicted in 44 patients (24%) at baseline and 48 patients (30%) by year 3, including ambulant participants. ECGs showed P-wave abnormalities indicative of delayed trans-atrial conduction in 58% of patients at baseline, representing a risk for developing atrial flutter or fibrillation. The prevalence of impaired left ventricular function or hypertrophy was comparable to that in the general population. DISCUSSION: These results demonstrate clinically significant respiratory impairment and abnormal atrial conduction in some patients with dysferlinopathy. Therefore, we recommend that annual or biannual follow-up should include FVC measurement, enquiry about arrhythmia symptoms and peripheral pulse palpation to assess cardiac rhythm. However, periodic specialist cardiac review is probably not warranted unless prompted by symptoms or abnormal pulse findings.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Eletrocardiografia , Feminino , Humanos , Estudos Longitudinais , Masculino , Distrofia Muscular do Cíngulo dos Membros/genética , Fenótipo
12.
Acta Myol ; 41(4): 178-187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36793652

RESUMO

Anti-MuSK myasthenia gravis (Anti-MuSK MG) is a chronic autoimmune disease caused by complement-independent dysfunction of the agrin-MuSK-Lrp4 complex, accompanied by the development of the pathological muscle fatigue and sometimes muscle atrophy. Fatty replacement of the tongue, mimic, masticatory and paravertebral muscles, revealed by muscle MRI and proton magnetic resonance spectroscopy (MRS), is considered to be a consequence of the myogenic process in anti-MuSK antibody MG in the patients with a plenty long course of the disease. However, in most experimental studies on animal models with anti-MuSK MG, complex presynaptic and postsynaptic changes are revealed, accompanied by the functional denervation of masticatory and paravertebral muscles predominantly. This study presents the MRI, nerve conduction studies (NCS), repetitive nerve stimulation (RNS) and electromyography (EMG) of neurogenic lesions of the axial muscles (m. Multifidus Th12, L3-L5; m. Erector spinae L4-L5) in two patients K. (51 years old), and P. (44 years old), both of whom were having weakness of the paravertebral muscles for 2-4 months due to anti-MuSK MG. The clinical manifestations, as well as the edematous changes in the paravertebral muscles, regressed after therapy. Thus, these clinical examples may confirm the presence of the neurogenic changes at an early stage of anti-MuSK myasthenia gravis and indicate importance of immediate initiation of therapy to avoid the development of muscle atrophy and fatty infiltration.


Assuntos
Miastenia Gravis , Receptores Colinérgicos , Animais , Humanos , Miastenia Gravis/complicações , Miastenia Gravis/diagnóstico , Eletromiografia , Atrofia Muscular , Músculos/patologia , Receptores Proteína Tirosina Quinases
13.
Med Sci (Paris) ; 38 Hors série n° 1: 49-51, 2022 Dec.
Artigo em Francês | MEDLINE | ID: mdl-36649638

RESUMO

The second edition of the Baltic School of Neuromyology took place on August 26-27, 2022 in Riga (Latvia), in a somewhat peculiar atmosphere given the international situation. An opportunity for the authors to measure the accomplishments made by their Baltic counterparts in the diagnosis and management of neuromuscular disorders, a successful although challenging venture, which led to the integration of three Baltic neuromuscular reference centers to the European Reference Network Euro-NMD. Beyond this form of consecration, and even though a lot remains to be achieved, notably in the field of muscle histopathology, various Baltic teams showed truly remarkable pieces of clinical research that will be useful to the whole myology community worldwide.


Title: La deuxième École Balte de Neuromyologie. Abstract: La deuxième édition de l'École Balte de Neuromyologie s'est tenue du 26 au 27 août 2022 à Riga (Lettonie) dans une ambiance un peu particulière étant donné la situation internationale. Ce fut l'occasion pour les auteurs de mesurer le chemin parcouru par leurs homologues baltes tant dans le domaine du diagnostic que celui de la prise en charge des maladies neuromusculaires. Cette entreprise difficile mais couronnée de succès a conduit à l'intégration de trois centres de référence neuromusculaire baltes au sein de l'ERN (réseau européen des maladies rares) Euro-NMD. Au-delà de cette forme de consécration, et même si beaucoup reste à faire, au niveau de l'histopathologie musculaire notamment, les différentes équipes baltes ont présenté des travaux de recherche clinique tout à fait remarquables et utiles à l'ensemble de la communauté myologique.


Assuntos
Doenças Neuromusculares , Humanos , Letônia
15.
J Clin Endocrinol Metab ; 106(12): 3505-3514, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34333603

RESUMO

CONTEXT: Cardiovascular disease is the leading cause of death in patients with Cushing syndrome. Cortisol excess and adverse metabolic profile could increase cardiac fat, which can subsequently impair cardiac structure and function. OBJECTIVE: We aimed to evaluate cardiac fat mass and distribution in patients with Cushing syndrome. METHODS: In this prospective, cross-sectional study, 23 patients with Cushing syndrome and 27 control individuals of comparable age, sex, and body mass index were investigated by cardiac magnetic resonance imaging and proton spectroscopy. Patients were explored before and after biochemical disease remission. Myocardial fat measured by the Dixon method was the main outcome measure. The intramyocardial triglyceride/water ratio measured by spectroscopy and epicardial and pericardial fat volumes were secondary outcome measures. RESULTS: No difference was found between patients and controls in intramyocardial lipid content. Epicardial fat mass was increased in patients compared to controls (30.8 g/m2 [20.4-34.8] vs 17.2 g/m2 [13.1-23.5], P < .001). Similarly, pericardial fat mass was increased in patients compared to controls (28.3 g/m2 [17.9-38.0] vs 11.4 g/m2 [7.5-19.4], P = .003). Sex, glycated hemoglobin A1c, and the presence of hypercortisolism were independent determinants of epicardial fat. Pericardial fat was associated with sex, impaired glucose homeostasis and left ventricular wall thickness. Disease remission decreased epicardial fat mass without affecting pericardial fat. CONCLUSION: Intramyocardial fat stores are not increased in patients with Cushing syndrome, despite highly prevalent metabolic syndrome, suggesting increased cortisol-mediated lipid consumption. Cushing syndrome is associated with marked accumulation of epicardial and pericardial fat. Epicardial adiposity may exert paracrine proinflammatory effects promoting cardiomyopathy.


Assuntos
Adiposidade , Índice de Massa Corporal , Cardiomiopatias/patologia , Síndrome de Cushing/fisiopatologia , Gordura Intra-Abdominal/patologia , Miocárdio/patologia , Pericárdio/patologia , Adulto , Biomarcadores/análise , Glicemia/análise , Cardiomiopatias/epidemiologia , Estudos de Casos e Controles , Estudos Transversais , Feminino , Seguimentos , Hemoglobinas Glicadas/análise , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos
16.
Radiology ; 300(3): 652-660, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34254855

RESUMO

Background Quantitative MRI is increasingly proposed in clinical trials related to neuromuscular disorders (NMDs). Purpose To investigate the potential of an MR fingerprinting sequence for water and fat fraction (FF) quantification (MRF T1-FF) for providing markers of fatty replacement and disease activity in patients with NMDs and to establish the sensitivity of water T1 as a marker of disease activity compared with water T2 mapping. Materials and Methods Data acquired between March 2018 and March 2020 from the legs of patients with NMDs were retrospectively analyzed. The MRI examination comprised fat-suppressed T2-weighted imaging, mapping of the FF measured with the three-point Dixon technique (FFDixon), water T2 mapping, and MRF T1-FF, from which the FF measured with MRF T1-FF (FFMRF) and water T1 were derived. Data from the legs of healthy volunteers were prospectively acquired between January and July 2020 to derive abnormality thresholds for FF, water T2, and water T1 values. Kruskal-Wallis tests and receiver operating characteristic curve analysis were performed, and linear models were used. Results A total of 73 patients (mean age ± standard deviation, 47 years ± 12; 45 women) and 15 healthy volunteers (mean age, 33 years ± 8; three women) were evaluated. A linear correlation was observed between FFMRF and FFDixon (R2 = 0.97, P < .001). Water T1 values were higher in muscles with high signal intensity at fat-suppressed T2-weighted imaging than in muscles with low signal intensity (mean value, 1281 msec [95% CI: 1165, 1604] vs 1198 msec [95% CI: 1099, 1312], respectively; P < .001), and a correlation was found between water T1 and water T2 distribution metrics (R2 = 0.66 and 0.79 for the median and 90th percentile values, respectively; P < .001). Water T1 classified the patients' muscles as abnormal based on quantitative water T2, with high sensitivity (93%; 68 of 73 patients) and specificity (80%; 53 of 73 patients) (area under the receiver operating characteristic curve, 0.92 [95% CI: 0.83, 0.97]; P < .001). Conclusion Water-fat separation in MR fingerprinting is robust for deriving quantitative imaging markers of intramuscular fatty replacement and disease activity in patients with neuromuscular disorders. © RSNA, 2021 Online supplemental material is available for this article.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/diagnóstico por imagem , Doenças Neuromusculares/diagnóstico por imagem , Tecido Adiposo/diagnóstico por imagem , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Doenças Neuromusculares/patologia , Estudos Retrospectivos , Água
17.
Magn Reson Med ; 86(1): 115-130, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33565187

RESUMO

PURPOSE: To evaluate the repeatability of multinuclear interleaved 1 H/31 P NMR dynamic acquisitions in skeletal muscle and the impact of nuclear Overhauser enhancement (nOe) on the 31 P results at 3T in exercise-recovery and ischemia-hyperemia paradigms. METHODS: A 1 H/31 P interleaved pulse sequence was used to measure every 2.5 s a perfusion-weighted image, a T2∗ map, a 31 P spectrum and 32 1 H spectra sensitive to deoxymyoglobin. 21 subjects performed a plantar flexion exercise and after recovery underwent an 8-min lower leg ischemia. The procedure was repeated in visit 2 with 12 subjects. An additional exercise bout without 1 H excitation was appended to visit 1. Individual 1 H RF pulse nOe was measured at rest in every visit. RESULTS: Repeatability scores (coefficient of variation, Bland-Altman analysis) were similar to those found in the literature using similar mono-nuclear acquisitions. |Pi]/[PCr], pH drop, creatine rephosphorylation rate (τPCr ), maximum perfusion, time to peak perfusion, and blood flow post-exercise showed high reliability (intraclass correlation coefficient > 0.7), whereas hemodynamic results from reactive hyperemia showed higher repeatability. After accounting for nOe, which increased Pi and PCr signal-to-noise ratio by 30%, no differences in 31 P results were observed between interleaved and 31 P MRS-only acquisitions. τPCr was unaffected by nOe. CONCLUSION: The method shows good repeatability for both paradigms while simultaneously providing multiple dynamic data sets on a clinical scanner. The nOe effects were accounted for on a per-subject and per-visit basis using a short 31 P reference scan. This multiparametric approach has a multitude of applications for the study of oxygen utilization and ATP turnover in the muscle.


Assuntos
Perna (Membro) , Músculo Esquelético , Exercício Físico , Humanos , Perna (Membro)/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Reprodutibilidade dos Testes
18.
Neuromuscul Disord ; 31(4): 265-280, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610434

RESUMO

This study aims to determine clinically relevant phenotypic differences between the two most common phenotypic classifications in dysferlinopathy, limb girdle muscular dystrophy R2 (LGMDR2) and Miyoshi myopathy (MMD1). LGMDR2 and MMD1 are reported to involve different muscles, with LGMDR2 showing predominant limb girdle weakness and MMD1 showing predominant distal lower limb weakness. We used heatmaps, regression analysis and principle component analysis of functional and Magnetic Resonance Imaging data to perform a cross-sectional review of the pattern of muscle involvement in 168 patients from the Jain Foundation's international Clinical Outcomes Study for Dysferlinopathy. We demonstrated that there is no clinically relevant difference in proximal vs distal involvement between diagnosis. There is a continuum of distal involvement at any given degree of proximal involvement and patients do not fall into discrete distally or proximally affected groups. There appeared to be geographical preference for a particular diagnosis, with MMD1 being more common in Japan and LGMDR2 in Europe and the USA. We conclude that the dysferlinopathies do not form two distinct phenotypic groups and therefore should not be split into separate cohorts of LGMDR2 and MM for the purposes of clinical management, enrolment in clinical trials or access to subsequent treatments.


Assuntos
Miopatias Distais/diagnóstico , Atrofia Muscular/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Adolescente , Adulto , Criança , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/fisiopatologia , Fenótipo , Adulto Jovem
19.
Ann Neurol ; 89(5): 967-978, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33576057

RESUMO

OBJECTIVE: Dysferlinopathy is a muscular dystrophy with a highly variable clinical presentation and currently unpredictable progression. This variability and unpredictability presents difficulties for prognostication and clinical trial design. The Jain Clinical Outcomes Study of Dysferlinopathy aims to establish the validity of the North Star Assessment for Limb Girdle Type Muscular Dystrophies (NSAD) scale and identify factors that influence the rate of disease progression using NSAD. METHODS: We collected a longitudinal series of functional assessments from 187 patients with dysferlinopathy over 3 years. Rasch analysis was used to develop the NSAD, a motor performance scale suitable for ambulant and nonambulant patients. Generalized estimating equations were used to evaluate the impact of patient factors on outcome trajectories. RESULTS: The NSAD detected significant change in clinical progression over 1 year. The steepest functional decline occurred during the first 10 years after symptom onset, with more rapid decline noted in patients who developed symptoms at a younger age (p = 0.04). The most rapidly deteriorating group over the study was patients 3 to 8 years post symptom onset at baseline. INTERPRETATION: The NSAD is the first validated limb girdle specific scale of motor performance, suitable for use in clinical practice and clinical trials. Longitudinal analysis showed it may be possible to identify patient factors associated with greater functional decline both across the disease course and in the short-term for clinical trial preparation. Through further work and validation in this cohort, we anticipate that a disease model incorporating functional performance will allow for more accurate prognosis for patients with dysferlinopathy. ANN NEUROL 2021;89:967-978.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Criança , Ensaios Clínicos como Assunto/métodos , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Distrofia Muscular do Cíngulo dos Membros/psicologia , Psicometria , Resultado do Tratamento , Adulto Jovem
20.
Sci Rep ; 11(1): 284, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431931

RESUMO

Fibrosis is a key pathological feature in muscle disorders, but its quantification mainly relies on histological and biochemical assays. Muscle fibrosis most frequently is entangled with other pathological processes, as cell membrane lesions, inflammation, necrosis, regeneration, or fatty infiltration, making in vivo assessment difficult. Here, we (1) describe a novel mouse model with variable levels of induced skeletal muscle fibrosis displaying minimal inflammation and no fat infiltration, and (2) report how fibrosis affects non-invasive metrics derived from nuclear magnetic resonance (NMR) and ultrasound shear-wave elastography (SWE) associated with a passive biomechanical assay. Our findings show that collagen fraction correlates with multiple non-invasive metrics. Among them, muscle stiffness as measured by SWE, T2, and extracellular volume (ECV) as measured by NMR have the strongest correlations with histology. We also report that combining metrics in a multi-modality index allowed better discrimination between fibrotic and normal skeletal muscles. This study demonstrates that skeletal muscle fibrosis leads to alterations that can be assessed in vivo with multiple imaging parameters. Furthermore, combining NMR and SWE passive biomechanical assay improves the non-invasive evaluation of skeletal muscle fibrosis and may allow disentangling it from co-occurring pathological alterations in more complex scenarios, such as muscular dystrophies.


Assuntos
Técnicas de Imagem por Elasticidade , Imageamento por Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Animais , Fibrose , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...